Quantitative susceptibility-weighted imaging may be an accurate method for determining stroke hypoperfusion and hypoxia of penumbra

Category: Papers
Related Topics: qsm, stroke, swi

Author(s): Xiudi Lu1 & Linglei Meng2 & Yongmin Zhou3 & Shaoshi Wang2 & Miller Fawaz4 & Meiyun Wang5 & E. Mark Haacke4 & Chao Chai6 & Meizhu Zheng7 & Jinxia Zhu8 & Yu Luo3 & Shuang Xia6
Journal: European Radiology
Published: 2021
Read Full Paper: https://link.springer.com/article/10.1007%2Fs00330-020-07485-2

Abstract

Objectives

To quantitatively evaluate the volume of the ischemic penumbra using susceptibility-weighted imaging and mapping (SWIM) of asymmetrical prominent cortical veins (APCVs) in patients with acute ischemic stroke.

Methods

Eighty-five eligible patients with acute ischemic stroke on admission within 12 h from symptom onset were studied. The APCVs on SWIM were quantitatively (SWI-volume) and semi-quantitatively (SWI-Alberta Stroke Program Early CT Score, SWI-ASPECTS) evaluated to calculate mismatch. To assess the diagnostic efficacy of APCVs on SWIM, comparative analyses were performed between SWIvolume-DWI mismatch and SWIASPECTS-DWI mismatch, using PWI-DWI mismatch as a reference. Correlations were calculated between the mismatches, as well as between SWI-volume and time-to-maximum (Tmax) > 6 s volume. Additionally, each of these mismatches was correlated with the National Institute of Health Stroke Scale (NIHSS).

Results

The sensitivity, negative predictive value, and accuracy of SWIvolume-DWI mismatch were demonstrably higher than SWIASPECTS-DWI mismatch (100% vs. 53.7%, 100% vs. 9.5%, 97.7% vs. 54.5%, respectively). A significant positive correlation was found between SWIvolume-DWI and PWI-DWI mismatch (r = 0.691, p < 0.01), as well as between SWI-volume and Tmax > 6 s volume (r = 0.786, p < 0.001). A significant negative correlation was found between SWIvolume-DWI mismatch and NIHSS (r = − 0.360, p = 0.022), as well as between SWIASPECTS-DWI mismatch and NIHSS (r = − 0.499, p = 0.001).

Conclusions

SWIvolume-DWI mismatch had higher diagnostic efficacy than SWIASPECTS-DWI mismatch in defining the ischemic penumbra and showed good consistency with PWI-DWI mismatch in acute ischemic stroke. Quantitation of APCVs using SWIM provided an accurate method for determining hypoperfusion and provided a reliable method to reflect the hypoxia of penumbra.

New & Related

All Resources

Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI).

read more
Quantifying Tissue Properties of the Optic Radiations Using Strategically Acquired Gradient Echo Imaging and Enhancing the Contrast Using Diamagnetic Susceptibility Weighted Imaging

Quantifying Tissue Properties of the Optic Radiations Using Strategically Acquired Gradient Echo Imaging and Enhancing the Contrast Using Diamagnetic Susceptibility Weighted Imaging

Visualization of the optic radiations is of clinical importance for diagnosing many diseases and depicting their anatomic structures for neurosurgical interventions. In this study, we quantify proton density, T1, T2*, and susceptibility of the optic radiation fiber bundles in a series of 10 healthy control participants using strategically acquired gradient echo imaging.

read more